P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation.
نویسندگان
چکیده
ATP, released at the leading edge of migrating neutrophils, amplifies chemotactic signals. The aim of our study was to investigate whether neutrophils express ATP-gated P2X(1) ion channels and whether these channels could play a role in chemotaxis. Whole-cell patch clamp experiments showed rapidly desensitizing currents in both human and mouse neutrophils stimulated with P2X(1) agonists, alphabeta-methylene ATP (alphabetaMeATP) and betagammaMeATP. These currents were strongly impaired or absent in neutrophils from P2X(1)(-/-) mice. In Boyden chamber assays, alphabetaMeATP provoked chemokinesis and enhanced formylated peptide- and IL-8-induced chemotaxis of human neutrophils. This agonist similarly increased W-peptide-induced chemotaxis of wild-type mouse neutrophils, whereas it had no effect on P2X(1)(-/-) neutrophils. In human as in mouse neutrophils, alphabetaMeATP selectively activated the small RhoGTPase RhoA that caused reversible myosin L chain phosphorylation. Moreover, the alphabetaMeATP-elicited neutrophil movements were prevented by the two Rho kinase inhibitors, Y27632 and H1152. In a gradient of W-peptide, P2X(1)(-/-) neutrophils migrated with reduced speed and displayed impaired trailing edge retraction. Finally, neutrophil recruitment in mouse peritoneum upon Escherichia coli injection was enhanced in wild-type mice treated with alphabetaMeATP, whereas it was significantly impaired in the P2X(1)(-/-) mice. Thus, activation of P2X(1) ion channels by ATP promotes neutrophil chemotaxis, a process involving Rho kinase-dependent actomyosin-mediated contraction at the cell rear. These ion channels may therefore play a significant role in host defense and inflammation.
منابع مشابه
Endotoxin-induced autocrine ATP signaling inhibits neutrophil chemotaxis through enhancing myosin light chain phosphorylation.
Although the neutrophil recruitment cascade during inflammation has been well described, the molecular players that halt neutrophil chemotaxis remain unclear. In this study, we found that lipopolysaccharide (LPS) was a potent stop signal for chemotactic neutrophil migration. Treatment with an antagonist of the ATP receptor (P2X1) in primary human neutrophils or knockout of the P2X1 receptor in ...
متن کاملPurinergic control of inflammation and thrombosis: Role of P2X1 receptors
Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stabi...
متن کاملCa2+ influx through P2X1 receptors amplifies P2Y1 receptor-evoked Ca2+ signaling and ADP-evoked platelet aggregation.
Many cells express both P2X cation channels and P2Y G-protein-coupled receptors that are costimulated by nucleotides released during physiologic or pathophysiologic responses. For example, during hemostasis and thrombosis, ATP-gated P2X1 channels and ADP-stimulated P2Y1 and P2Y12 G-protein coupled receptors play important roles in platelet activation. It has previously been reported that P2X1 r...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Interplay between P2Y1, P2Y12, and P2X1 receptors in the activation of megakaryocyte cation influx currents by ADP: evidence that the primary megakaryocyte represents a fully functional model of platelet P2 receptor signaling
The difficulty of conducting electrophysiologic recordings from the platelet has restricted investigations into the role of ion channels in thrombosis and hemostasis. We now demonstrate that the wellestablished synergy between P2Y1 and P2Y12 receptors during adenosine diphosphate (ADP)–dependent activation of the platelet IIb 3 integrin also exists in murine marrow megakaryocytes, further suppo...
متن کاملP2X1-mediated ERK2 activation amplifies the collagen-induced platelet secretion by enhancing myosin light chain kinase activation.
The ATP-gated P2X1 ion channel is the only P2X subtype expressed in human platelets. Via transmission electron microscopy, we found that P2X1 mediates fast, reversible platelet shape change, secretory granule centralization, and pseudopodia formation. In washed human platelets, the stable P2X1 agonist alpha,beta-methylene ATP (alpha,beta-meATP) causes rapid, transient (2-5 s), and dose-dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 183 4 شماره
صفحات -
تاریخ انتشار 2009